
GAME OBJECT MODELS
and Scripting

Jason Gregory
Naughty Dog, Inc.

1

ANATOMY OF A GAME
WORLD

• Static geometry (“background”)

• Dynamic game objects (“foreground”)

• World “chunks” for streaming

• Game logic & overall flow

• Hard-coded

• Scripted

2

3

ANATOMY OF A GAME
WORLD

• Line between static and dynamic can be blurry

• Not all dynamic entities are logically “objects”

particle effects, water, lights: might be BG or FG

Dynamic lights, running instances of a script, timers, …

May be implemented as a dynamic “object” despite not representing any logical “object” in the game

4

OBJECT MODELS

5

OBJECT MODELS

• Two distinct meanings:

1. Properties/architecture of a particular object-oriented
programming language (e.g. C++, Java, Python, …)

2. Collection of objects/classes with which programs can
be built or problems can be solved

1. Properties/architecture of a particular object-oriented programming language (e.g. C++, Java, Python)

* Defines concepts like class, method, inheritance, etc. and specifies implementation details particular to that language

2. Collection of objects/classes with which programs can be built or problems can be solved

* This is what we mean when we talk about a game’s object model

6

GAME OBJECT MODEL

• The term “game object model” really refers to two
distinct object models:

1. Tool-time

2. Run-time

The two are closely related conceptually, but the two implementations may differ a great deal

7

TOOL-TIME OBJECT MODEL

8

TOOL-TIME OBJECT MODEL
• The tool-time object model is concerned with allowing

developers (designers and programmers) to:

• Define the contents of the game world

• Define initial properties of game objects

• Associate game objects with behavior

• A world building tool (typically a GUI) is used to create
tool-time object models, which can be loaded by the game

Define the contents of the game world (usually on a per-level/per-map basis)

behavior (hard-coded or scripted)

9

10

11

TOOL-TIME OBJECT MODEL

• Tool-time model is designed to be flexible above all else

• Typically object-oriented

• Simple and intuitive: direct mapping to concepts used by
designers

• Easy to create, destroy and manipulate game world entities

• Often relatively easy to add new object types

• Important to support some kind of archetype concept

* Typically object-oriented

* Simple and intuitive: direct mapping to concepts used by designers

* Easy to create, destroy and manipulate game world entities

* Often relatively easy to add new object types (may require some programmer support)

* Important to support some kind of archetype concept

 — Default properties for a given “class” of game object, which can be modified to change all instances of that “class” easily,
with per-instance overrides

 — Typically supports inheritance

12

TOOL-TIME OBJECT MODEL
• e.g. at Naughty Dog, everything in the tool-time game

object model falls into one of the following categories:

• Spawner

• Spline

• Region

• Nav Mesh

• Static Background Geometry

* Spawner: A key-value store that defines the type of game object, its 3D transform, and its other properties (including optional
binding to a script)

* Spline: A set of points/tangents that define a piecewise curve (in our case Catmull-Rom), plus properties which add
functionality to the spline

* Region: A 3D volume defined by bounding planes, plus properties which add functionality to each region

* Nav Mesh: A “2.5D” polygon mesh defining “traversable” areas for AI-controlled NPCs

* Static Background Geometry: Buildings, terrain, bridges, etc. (not strictly part of the object model, but part of the “level”
format)

13

TOOL-TIME OBJECT MODEL
• Spawner comprised of:

• Archetype: What type of game object? What properties does it offer? Default
values for all properties; Optional parent archetype (inheritance)

• Id: Unique identifier and/or human-readable name

• 3D transform: position, rotation, scale

• Reference to parent object: Allowing attachment hierarchies to be built

• Key-value store: “Dictionary” of other properties, some defined by the
schema, some free-form

• Property values override schema defaults

14

15

RUN-TIME OBJECT SYSTEM

16

RESPONSIBILITIES OF THE
RUN-TIME OBJECT SYSTEM

• Representation of the tool-time object model, with behaviors

• Memory management and streaming

• Simulation (updating the model each frame)

• Messaging and event handling

• High-level game flow (objectives, story beats, etc.)

• Scripting (enabling rapid iteration for behavior and flow)

17

RUN-TIME OBJECT MODEL

• Run-time object model primarily concerned with
functionality and performance

• A one-to-one mapping between tool-time entities
and run-time entities may not exist

One tool-time entity might be represented by multiple run-time C++ objects

“Array-of-structs” at tool-time could become “struct-of-arrays” at runtime

18

RUN-TIME OBJECT MODEL

• Many different ways to architect and implement a
run-time object model

• Monolithic class hierarchy

• Component-based

• Hybrid hierarchy/component model

• Property centric

Monolithic class hierarchy (one class per tool-time archetype)

Component-based model (each tool-time entity represented by a collection of run-time component objects)

Property centric: Giant property dictionary!

19

MONOLITHIC CLASS
HIERARCHY

• Obvious choice when run-
time language is OOP

• Downsides:

• Inflexible, hard to maintain

• Bubble-up problem

• Deadly diamond problem

20

PROBLEMS WITH MONOLITHIC
CLASS HIERARCHIES

Vehicle

Motorcycle SpeedBoat

Car Truck HovercraftYacht

LandVehicle WaterVehicle

Often not clear which class should be parent of which other class… what if I want an AnimatingObject that has no collision, for
example?

Can only categorize along one “axis” at each level of the hierarchy

What seems like a good hierarchy can have a monkey wrench thrown in: AmphibiousVehicle

21

DEADLY DIAMOND

ClassA

ClassB ClassC

ClassD

ClassA

ClassA

ClassB

ClassB’s
memory layout:

ClassA’s
memory layout:

ClassA

ClassC

ClassC’s
memory layout:

ClassA

ClassB

ClassD’s
memory layout:

ClassA

ClassC

ClassD

Leads to MI… but MI is problematic for a number of reasons

* deadly diamond: multiple “copies” of a base class, virtual bases

* gets very confusing, difficult to “grok”, hard to maintain

* Multiple __vfptr in object’s memory layout

22

MIX-IN CLASSES

GameObject

+GetHealth()
+ApplyDamage()
+IsDead()
+OnDeath()

MHealth +PickUp()
+Drop()
+IsBeingCarried()

MCarryable

NPCPlayer Tank Jeep Pistol MG Canteen Ammo

Character Vehicle Weapon Item

One solution is mix-ins

We do use this here and there at Naughty Dog

* e.g. LinkedNode

Use sparingly (if at all)

23

THE BUBBLE-UP EFFECT

Unreal’s Class  
Hierarchy

this is Unreal’s hier — gets complicated pretty fast!

also, suffers from “bubble up” effect:

what if Pawn, Light and Pickup all need a new feature? mix-ins? or just “bubble” that feature up to the only common base class:
Actor

as a result, Actor is a giant mess of unrelated features in Unreal

every Actor “pays” for all those features even if it doesn’t need them

24-1

THE BUBBLE-UP EFFECT

Unreal’s Class  
Hierarchy

this is Unreal’s hier — gets complicated pretty fast!

also, suffers from “bubble up” effect:

what if Pawn, Light and Pickup all need a new feature? mix-ins? or just “bubble” that feature up to the only common base class:
Actor

as a result, Actor is a giant mess of unrelated features in Unreal

every Actor “pays” for all those features even if it doesn’t need them

24-2

COMPONENT MODEL WITH
CENTRAL GAME OBJECT

GameObject

Transform

MeshInstance AnimationController

RigidBody

1

1

1 1
1

1

11

Can solve a lot of these problems by introducing “components”

has-a instead of is-a

central game object, with references (strong or weak) to various components

25

GENERIC COMPONENT
MODEL

• Tempting to make a
generic Component class

• Seems nice on the surface

• But usually impractical and
too limiting

• Why constrain yourself?

Asterisk indicates zero
or more instances
(e.g., linked list).

Tempting to make a generic Component class

“Every component MUST BE DERIVED from Component” (or else!)

Seems nice on the surface, but usually impractical and too limiting

Why constrain yourself?

26

PURE COMPONENT MODEL

-m_uniqueId : int = 72
GameObject

-m_uniqueId : int = 72
Transform

-m_uniqueId : int = 72
MeshInstance

-m_uniqueId : int = 72
AnimationController

-m_uniqueId : int = 72
RigidBody

why even have the central game object?

just give every component a unique id, and all the ones whose ids match “are” the GO

again, nice idea, seems like it could allow you to “compose” a game object arbitrarily at tool time

but difficult to debug, difficult to work with in practice

Unity does seem to do a nice job of allowing components to be aggregated at tool time (I’d like to know how they get around the
impractical aspects, e.g. when it makes no sense to have 5 Transform components, etc.)

27

PROPERTY-CENTRIC MODEL
• Object A

• Position

• Orientation

• Health

• Object B

• Position

• Orientation

• Position

• Object A

• Object B

• Orientation

• Object A

• Object B

• Health

• Object A

another interesting idea that was used on the game Thief

http://chrishecker.com/ images/6/6f/ObjSys.ppt

in my view, costs outweigh benefits… nice to be able to hit a breakpoint and see the object’s data in the debugger (but with a
debugger add-on that collected and presented all the object’s data in one place, I could see it becoming more interesting)

28

STREAMING
AND GAME “FLOW”

29

LOADING A “MAP”
• Designers create worlds (aka “maps,” aka “levels”)

in the world builder tool

• Artists create BG geometry in Maya (or other)

• Need to load this tool-time object model into
the game

• Transform into the run-time object model!

30

ISSUES TO CONSIDER
• Data format

• How can we fit all this into memory?

• Streaming? How to break up the data?

• Building the data into suitable format for run-time

• Rapid iteration considerations

• Debuggability

• How to revision-control all this game world data?

Various issues:

* data format? text? JSON/XML? binary?

* what can fit in memory at any given time? streaming required? (usually)

* how to stream? how break things up so they can stream in efficiently?

* distinction between some data that requires rapid iteration, others that do not

* in-game pak vs. geometry/skeleton/animation/materials pak

* debuggability: human-readable? searchable data formats?

31

FILE FORMATS

• Two basic options:

• Text (e.g., XML, JSON, custom)

• Binary

• Each has its share of issues to consider

• Choose file formats on case-by-case basis, taking
requirements and pros/cons into account

Important to choose the format on a case-by-case basis, according to requirements

32

TEXT FILES

• Parse time

• Versioning

• Intra-file references (by name? by GUID?)

• Serialization (automagic via reflection? hard-coded?)

• Tend to work well with revision-control; easily “diff ”d; easily
searchable

maybe pre-parse a text format into something that can be read more quickly by the engine?

33

BINARY FILES

• More efficient than text files

• Standard or custom?

• Monolithic or segmented?

• Versioning

• Endian-ness

• Intra-file references (pointer fix-ups)

34

POINTER FIX-UPS

Addresses:

Offsets:

Object 1

Object 2

Object 3

Object 4

0x0

0x240

0x4A0

0x7F0

Object 1

Object 4

Object 2

Object 3

0x2A080

0x2D750

0x2F110

0x32EE0

0x32EE0

0x2F110

0x2A080

0x4A0

0x240

0x0

Pointers converted

to offsets; locations

of pointers stored in

fix-up table.

Fix-Up Table

0x200

0x340

0x810

Pointers to various

objects are present.

3 pointers

35

FLAVORS OF GAME WORLD
DATA

• Binary “pak” files used for :

• BG and FG geometry + materials

• Textures

• Skeletons and animations

• Text or light-weight binary used for :

• Data that requires rapid iteration (spawners, regions, splines)

… and may utilize all sorts of other custom formats for specific things

 * script files are stored in their own binary format

 * GUI system uses JSON

This is what we do at Naughty Dog… YMMV

36

FLAVORS OF GAME WORLD
DATA

• A game engine may have many custom file
formats:

• Script files: Custom binary format

• GUI: Reads JSON files directly

• Engine config: Simple text files

• …

… and may utilize all sorts of other custom formats for specific things

 * script files are stored in their own binary format

 * GUI system uses JSON

This is what we do at Naughty Dog… YMMV

37

A FEW APPROACHES  
TO LOADING

• One level at a time (old-school)

• Air locks

• Linear level streaming

• Related: Streaming audio, animations, textures, …

• LOD-based open world streaming (GTA)

38

STREAMING

here’s how we break up BG geo at Naughty Dog

GTA5 / JustCause do something more sophisticated

* chunking must be carefully controlled based on geography

* must allow different LODs of the same chunk to be loaded independently

39

Chapter 1

Chunk 1

Chunk 2

Chunk 3

Objective 1B

Objective 1A

Objective 1C

Optional
Objective 1D

Objective 1E

Objective 1G

Optoinal
Objective 1F

Chapter 2

Chunk 4

Chunk 5

Chunk 6

Chunk 7

Objective 2B

Objective 2A

Objective 2C

Objective 2D

Objective 2G

Optoinal
Objective 2H

Optional
Objective 2F

Optional
Objective 2E

Objective 2I

1 2
3

4

Level 1
Level 2

Level 2
Level 3

Level 3
Level 4

here’s how it might tie in with “objectives” in the game

we have a “task graph” that is the master flow-control; level/chunk loading is driven from it, plus invisible regions in the world
that control exactly when each chunk will be added to the “want loads” list, or removed from it

texture streaming is a whole other issue with lots of its own complexity

40

STREAMING IN CHUNKS

we load all data in fixed-sized chunks to reduce the effects of memory fragmentation

now 1024 KiB actually

41

SPAWNING AND
DESTROYING GAME OBJECTS

42

SPAWN AND DESTROY

• Could just use new and delete

• … but memory fragmentation becomes a big problem

• Need a better solution

• Pools of objects of similar size? (“small mem” allocator)

• Relocatable memory (defragmentation)?

43

LOADING GAME OBJECTS
• Need to read the tool-time object specification

into the run-time object

• Various ways to accomplish this:

• Load binary-ready object “images”?

• Parse a text file?

• Read a key-value store?

At NDI we have the concept of a spawner, which is really just a k-v store

Spawning

44

SPAWNING: WHAT TYPE?

• What type of game object(s) to create?

• Need a way to turn tool-time type descriptor
into an instance of the appropriate C++ class(es)
at run-time

45

SPAWNING: WHAT TYPE?
• At Naughty Dog, here’s what we do:

• Each C++ class registers a TypeFactory object in a hash table

• Can look up a TypeFactory by name (key in the table)

• TypeFactory knows:

• How to instantiate its C++ class

• RTTI information: Parent class

• Size information for relocatable memory management

46

SPAWNING MECHANISM

TypeFactory

TypeFactory

TypeFactory

TypeFactory

NPC

Player

Vehicle

ExplodingBarrel

Spawning an object involves looking up the TypeFactory,

asking it for the block size to allocate (max size),

allocating a block in relocatable heap

instantiate via placement new

set up a stack-based allocator within the block for use by the class

call Init(), pass the Spawner so it can read the data store and init all run-time data members

“shrink” the block to fit what was actually used

47-1

SPAWNING MECHANISM

TypeFactory

TypeFactory

TypeFactory

TypeFactory

NPC

Player

Vehicle

ExplodingBarrel

Spawning an object involves looking up the TypeFactory,

asking it for the block size to allocate (max size),

allocating a block in relocatable heap

instantiate via placement new

set up a stack-based allocator within the block for use by the class

call Init(), pass the Spawner so it can read the data store and init all run-time data members

“shrink” the block to fit what was actually used

47-2

SPAWNING MECHANISM

TypeFactory

TypeFactory

TypeFactory

TypeFactory

NPC

Player

Vehicle

ExplodingBarrel

Spawning an object involves looking up the TypeFactory,

asking it for the block size to allocate (max size),

allocating a block in relocatable heap

instantiate via placement new

set up a stack-based allocator within the block for use by the class

call Init(), pass the Spawner so it can read the data store and init all run-time data members

“shrink” the block to fit what was actually used

47-3

SPAWNING MECHANISM

TypeFactory

Spawning an object involves looking up the TypeFactory,

asking it for the block size to allocate (max size),

allocating a block in relocatable heap

instantiate via placement new

set up a stack-based allocator within the block for use by the class

call Init(), pass the Spawner so it can read the data store and init all run-time data members

…

48-1

SPAWNING MECHANISM

TypeFactory 3 KiB

Spawning an object involves looking up the TypeFactory,

asking it for the block size to allocate (max size),

allocating a block in relocatable heap

instantiate via placement new

set up a stack-based allocator within the block for use by the class

call Init(), pass the Spawner so it can read the data store and init all run-time data members

…

48-2

SPAWNING MECHANISM

Vehicle  
(instance)

3 KiB

Spawning an object involves looking up the TypeFactory,

asking it for the block size to allocate (max size),

allocating a block in relocatable heap

instantiate via placement new

set up a stack-based allocator within the block for use by the class

call Init(), pass the Spawner so it can read the data store and init all run-time data members

…

48-3

SPAWNING MECHANISM

Vehicle  
(instance)

other data

3 KiB

Spawning an object involves looking up the TypeFactory,

asking it for the block size to allocate (max size),

allocating a block in relocatable heap

instantiate via placement new

set up a stack-based allocator within the block for use by the class

call Init(), pass the Spawner so it can read the data store and init all run-time data members

…

48-4

SPAWNING MECHANISM

Vehicle  
(instance)

other data

other data

other data

3 KiB

Spawning an object involves looking up the TypeFactory,

asking it for the block size to allocate (max size),

allocating a block in relocatable heap

instantiate via placement new

set up a stack-based allocator within the block for use by the class

call Init(), pass the Spawner so it can read the data store and init all run-time data members

…

48-5

SPAWNING MECHANISM

Vehicle  
(instance)

other data

other data

other data

2.6 KiB
Shrink!

finally, “shrink” the block to fit what was actually used

49

RELOCATION

GO0 GO1 GO2 GO3 …

50-1

RELOCATION

GO0 GO1 GO2 GO3 GO4 …

50-2

RELOCATION

GO0 GO1 GO3 GO4 …

50-3

RELOCATION

GO0 GO1 GO3 GO4 …

50-4

RELOCATION

GO0 GO1 GO3 GO4 …

50-5

RELOCATION
void	SomeObj::Relocate(ptrdiff_t	delta, 
																							uintptr_t	lowerBound,  
																							uintptr_t	upperBound)	
{	
				RelocatePointer(m_pData,	delta, 
																				lowerBound,	upperBound);  
				//	...	

				ParentClass::Relocate(delta, 
																										lowerBound, 
																										upperBound);	
}

51

template<typename	T> 
void	RelocatePointer(T*&	rp, 
																					ptrdiff_t	delta, 
																					uintptr_t	lowerBound,  
																					uintptr_t	upperBound)	
{	
				uintptr_t	addr	
					=	reinterpret_cast<uintptr_t>(rp);	

				if	(addr	>=	lowerBound	
				&&		addr	<	upperBound)	
				{	
								addr	+=	delta;	
								rp	=	reinterpret_cast<T*>(addr);	
				}	
}

52

OBJECT INITIALIZATION

• Naughty Dog uses the following approach (YMMV):

• In game object’s Init() function, it simply reads the
key-value store

• Flexible system, robust to tool-side changes

• Init() is free to do any kind of initialization it wants

• Create components, allocate per-instance data, etc.

53

Err	MyObj::Init(const	SpawnInfo&	info)	
{	
				Err	result	=	ParentClass::Init(info);	
				if	(result.Succeeded())	
				{	
								m_health	=	info.GetFloat(SID("health"), 
																																	m_health);	
								m_ammo	=	info.GetInt(SID("ammo"),	0);	
								//	...	
				}	
				return	result;	
}

54

GAME OBJECT REFERENCES

55

IDS AND HANDLES
• Each game object needs some kind of unique id

• Human-readable, yet efficient (e.g., hashed string id)

• Path in the hierarchy? or just unique names all around?

• Also need to store references to game objects
across multiple frames

• Relocatable objects? Need to use handles

we use SIDs as object unique ids (human-readable, yet efficient)

56

OBJECT HANDLES

GO0 GO1 GO2 GO3 GO4 …

0 2 4 1 3 …Records

record indices are fixed, never relocate

so can use a record index (or pointer to rec) as a “handle” to the GO

because GOs come and go, need to use the unique id of the GO as a verification that a handle hasn’t gone “stale” and been
replaced with a new GO

57

UPDATING THE RUN-TIME
OBJECT MODEL

58

OBJECT STATE “VECTORS”
• Can think of each game object’s property values as

forming a “state vector”

• State of game object i is defined to be Si(t)

• A game runs a discrete-time simulation

• Updating a game object’s state amounts to finding:

• Si(t + dt) given Si(t), for all game objects i

59

A SIMPLE IDEA  
(THAT DOESN’T WORK)
while	(true)	
{	
				PollJoypad();	
				float	dt	=	GetFrameDeltaTime();	
				for	(each	gameObject) 
				{	
								gameObject.Update(dt);	
				}	
				g_videoDriver.FlipBuffers();		
}

60

virtual	void	Tank::Update(float	dt)	
{	
				//	Update	the	state	of	the	tank	itself. 
				MoveTank(dt); 
				DeflectTurret(dt); 
				FireIfNecessary();	

				//	Now	update	low-level	engine	subsystems	on  
				//	behalf	of	this	tank.	(NOT	a	good	idea!)	

				m_pAnimationComponent->Update(dt); 
				m_pCollisionComponent->Update(dt); 
				m_pPhysicsComponent->Update(dt); 
				m_pAudioComponent->Update(dt); 
				m_pRenderingComponent->draw();	
}

61

BATCHED UPDATES
• Most engine subsystems have tight performance constraints

• Much more efficient to do all updates of a certain variety
at once as a “batch”

• Code and data locality

• Improves I-cache and D-cache performance

• Minimizes duplicated calculations

• Optimal data pipelining

62

BATCHED GAME LOOP
while	(true)	
{	
				PollJoypad();	
				float	dt	=	GetFrameDeltaTime();	
				for	(each	gameObject) 
				{	
								gameObject.Update(dt);	
				}	
				g_animationEngine.Update(dt);	
				g_physicsEngine.Simulate(dt);	
				g_collisionEngine.Run(dt);	
				g_audioEngine.Update(dt);	
				g_renderingEngine.RenderFrame();	
				g_videoDriver.FlipBuffers();		
	}

63

INTER-OBJECT
DEPENDENCIES

Depends

On

another issue to consider is that objects depend on one another

can’t update Object1 until Object2 has been updated, and its new state vector is known

64

BUCKETED UPDATES
for	(each	bucket)	
{	
				for	(each	gameObject	in	bucket) 
				{	
								gameObject.Update(dt);	
				}	
}	

g_animationEngine.Update(dt);	
g_physicsEngine.Simulate(dt);	
//	...

65

PHASED UPDATES
• Must also consider interactions between game objects and other

engine subsystems

• Some subsystems may update in phases

• e.g., Animation might operate like this:
• Calculate intermediate poses
• Apply poses to rag doll physics
• Simulate physics/rag dolls
• Apply rag doll final poses to skeletons
• Post-process for procedural animation, IK, etc.
• Generate final matrix palette

66

while	(true)	//	main	game	loop 
{	
				//	...	
				for	(each	gameObject)	
								gameObject.PreAnimUpdate(dt);	

				g_animationEngine.CalculateIntermediatePoses(dt);		

				for	(each	gameObject) 
								gameObject.PostAnimUpdate(dt);	

				g_ragdollSystem.ApplySkeletonsToRagDolls(); 
				g_physicsEngine.Simulate(dt); 
				g_collisionEngine.DetectAndResolveCollisions(dt); 
				g_ragdollSystem.ApplyRagDollsToSkeletons(); 
				g_animationEngine.FinalizePoseAndMatrixPalette();	

				for	(each	gameObject)	
								gameObject.FinalUpdate(dt); 
				//	...	
}		

each engine will differ somewhat

we can give our objects however many phases we need

also, combined with bucketed updates, some or all of the above may be done per-bucket

67

INTER-OBJECT QUERIES

• As game objects update, they often need to query
the state(s) of other game object(s)

• Player might “ask” its weapon how much ammo it has

• Weapon might “ask” what kind of character is holding it

• etc.

68

INTER-OBJECT QUERIES

• Having one game object query the state of
another leads to all sorts of issues

69

INTER-OBJECT QUERIES

t1

t

SAObjectA

ObjectB

SA

ObjectC

ObjectD

SC

t2

SB

SD

SB

SC

t1

t

SAObjectA SA

ObjectB SB

ObjectC SC

ObjectD SD

t2

SB

SC

SD

t

Theory

Reality

ideally updating happens simultaneously on all objects, totally independently

in reality, it happens piecemeal over the course of a single frame

70

INTER-OBJECT QUERIES

• The states of all game objects are consistent
before and after the update loop, but they will be
inconsistent during it.

71

INTER-OBJECT QUERIES

• Some solutions to this problem:

• Bucketed updates: Only query objects in other buckets

• State cache: Keep a copy of last frame’s (consistent) state

• Just be careful out there: Deal with bugs if/as they happen!

72

MULTI-THREADED UPDATES

• Modern gaming hardware is multi-core

• Gotta take advantage of all that power!

• Therefore: Concurrent updates

• Engine subsystems

• Game object updates too? (difficult!)

73

WAYS TO ACHIEVE
PARALLELISM

• Instruction-level parallelism

• superscalar CPUs

• Flynn’s taxonomy (SISD, MISD*, SIMD, MIMD)

• Multi-threading / hyper-threading on single core

• Multi-core

• Distributed processing across multiple machines

*MISD usually only used for fault tolerance, not relevant to games generally

74

SIMD

• SIMD vector processing available on most modern
CPUs

• Can use to do 3D vector math (natural when your
SIMD is 4-channel)

• Can also divide your work into parallel streams (4-
channel or higher SIMD)

75

void	MultiplyFloats(int	n,	const	float*	a,	const	float*	b,  
																				float*	r)	
{	
				for	(int	i	=	0;	i	<	n;	++i)	
				{	
								r[i]	=	a[i]	*	b[i];	
				}	
}

76

void	MultFloatsSIMD(int	n,	const	float*	a,	const	float*	b,  
																				float*	r)	
{	
				int	m	=	n	/	4;		//	split	into	batches	of	4	floats	
				for	(int	j	=	0;	j	<	m;	++j)	
				{	
								const	int	i	=	4*j;	
								simd_load(r1,	&a[i]);	
								simd_load(r2,	&b[i]);	
								simd_mul(r3,	r1,	r2);	
								simd_store(&r[i],	r3);	
				}	

				int	iRest	=	m*4;		//	do	any	remaining	ones	
				for	(int	i	=	iRest;	i	<	n;	++i)	
				{	
								r[i]	=	a[i]	*	b[i];	
				}	
}

77

MULTI-CORE ARCHITECTURES
AMD Jaguar CPU @ 1.6 GHz

CPC 0

L1 D$

32 KiB

8-way

L1 I$

32 KiB

2-way

Core 0

L1 D$

32 KiB

8-way

L1 I$

32 KiB

2-way

Core 1

L1 D$

32 KiB

8-way

L1 I$

32 KiB

2-way

Core 3

L1 D$

32 KiB

8-way

L1 I$

32 KiB

2-way

Core 2

CPC 0

L1 D$

32 KiB

8-way

L1 I$

32 KiB

2-way

Core 4

L1 D$

32 KiB

8-way

L1 I$

32 KiB

2-way

Core 5

L1 D$

32 KiB

8-way

L1 I$

32 KiB

2-way

Core 7

L1 D$

32 KiB

8-way

L1 I$

32 KiB

2-way

Core 6

AMD Radeon GPU

(comparable to 7870)

@ 800 MHz

1152 stream processors

snoopsnoop

“Onion” Bus

(10 GiB/s each way)

“Garlic” Bus

(176 GiB/s)

(non cache-coherent)

L2 Cache

2 MiB / 16-way

L2 Cache

2 MiB / 16-way

C
P

U
 B

u
s

 (
2

0
 G

iB
/s

)

Main RAM

8 GiB GDDR5

Cache Coherent

Memory Controller

78

CONCURRENT SUBSYSTEM
UPDATES

• By dividing our engine into (mostly) independent
subsystems, we’re already at an advantage

• Could map each subsystem to a thread or core of its own

• Could execute subsystems’ workloads as “jobs” on an SPU
or other core

This maps very naturally to subsystems like animation, path finding, ray casting

With some work, we were able to get Havok to fit into our system as well

Works well any time the subsystems are mostly independent

* well-defined input -> processing -> well-defined output

Not so easy to update game objects this way, b/c of large degree of inter-dependency

79

CONCURRENT SUBSYSTEM
UPDATES

• At Naughty Dog, we use a “job system”

• On PS3, mapped naturally to the 6 SPUs

• On PS4, we have 6 (6.5) cores, so still works well

• Each core runs a single thread

• The thread receives requests to run jobs

• Each job is run in a fiber

80

JOB SYSTEM
SYNCHRONIZATION

• Counters

• Each job increments the counter when it runs, decrements when
done

• Another “client” job can wait for the counter to reach zero

• Spin locks

• Implemented via atomic operations provided by CPU

• Exclusive locks; also multiple-reader, single writer

81

CONCURRENT GAME OBJECT
UPDATING

• Difficult to achieve because of high degree of
inter-object dependencies and queries

• Some approaches that can work:

• Locking (doesn’t work very well in general)

• Double-buffered game object state vectors

• Snapshots (poor-man’s double buffering)

82

SCRIPTING

83

ENGINE LAYERS

• Every game engine is built in layers

• “Drivers” and other low-level systems: Ultra-efficient, highly
optimized, but inflexible (written in C++, C, assembly)

• Engine: Game-agnostic, somewhat flexible (C++)

• Gameplay systems: Flexible, rapid prototyping (C++)

• Designer-controlled: Most flexible, rapid iteration (script)

84

SCRIPTING

• The upper-most layer is typically implemented in a
language that permits rapid iteration

• In the old days, Naughty Dog used GOAL for everything
but low-level layers!

• Nowadays, most game companies use C++ for lower and
intermediate layers, and a scripting language for top layer

85

SOME SCRIPTING
LANGUAGES

• Lua

• Small C (now Pawn)

• Python

• Java

• JavaScript

• Boo

• C#

• Custom

• QuakeC

• UnrealScript

• Graphical / node-based

86

87

TYPES OF SCRIPTING

• Data definition

• Run-time script

88

RUN-TIME SCRIPTING
ARCHITECTURES

• Scripted callbacks, event handlers

• “Latent” script functions (long lifetime)

• Using script to extend C++ game object model

• Defining entirely new game object types in script

• Script-driven game

At its simplest, script “snippets” can be called by engine in response to events… gives the script a chance to react, call
functions in the engine, then exit

“Latent” script functions are functions that start executing, then go to “sleep” for a time, and are woken back up by the engine in
response to some condition being met

Can also extend the game object model itself using script / define entirely new types of GO!

Entire high-level game logic could be run by script — the engine could just respond to script commands, but never do anything
itself

89

BASICS OF INTEGRATING A
SCRIPTING LANGUAGE

1. Get the VM compiling and linking in your engine

2. Provide means of spinning up a VM

3. Ability for engine to call scripted functions

4. Hooks allowing script to call back into engine

5. Connect to game object model, if desired

#5 can be a big job

* how does one reference a game object within script? guid? handle? by name?

* how do you associate a script with a GO?

* what IS a script, anyway? single function? collection of functions / object? FSM?

* can a script-writer actually extend the object model (create a purely scripted subclass)?

90

