
Dogged Determination
Technology and Process at Naughty Dog, Inc.

JASON GREGORY
LEAD PROGRAMMER
NAUGHTY DOG, INC.

Tuesday, March 4, 14

“The University of
Naughty Dog”

Paul Keet, Lead Programmer, Medal of Honor
Electronic Arts

Tuesday, March 4, 14

Tuesday, March 4, 14

Tuesday, March 4, 14

Naughty Dog Games
Believable characters, compelling stories

Jaw-dropping visuals

Some of the best animation in the biz

Rich and immersive soundscapes

Touching vocal performances and memorable
music

World-class technology

Tuesday, March 4, 14

So What’s Our Secret?

People

Culture

Process

Technology

CONTENT!

Tuesday, March 4, 14

People

Tuesday, March 4, 14

People
Making games (and most commercial products!) is
a team effort

What makes a great team?

Each individual is of the highest caliber

Team as a whole “gels” and operates effectively

Effective hiring is the key

Tuesday, March 4, 14

Axes of Hiring

Joel Spolsky, of Microsoft and Fog Creek fame,
speaks of the two axes of hiring

Is the candidate smart?

Can the candidate get things done?

Tuesday, March 4, 14

Axes of Hiring

SMARTNESS

ABILITY TO
GET THINGS

DONE

Tuesday, March 4, 14

Axes of Hiring

SMART AND
GETS THINGS DONE

SMARTNESS

ABILITY TO
GET THINGS

DONE

Tuesday, March 4, 14

Axes of Hiring

SMARTNESS

ABILITY TO
GET THINGS

DONE

SMART, BUT CAN’T
GET THINGS DONE

Tuesday, March 4, 14

Axes of Hiring

SMARTNESS

ABILITY TO
GET THINGS

DONE

NOT SMART, CAN’T
GET THINGS DONE

Tuesday, March 4, 14

Axes of Hiring

SMARTNESS

ABILITY TO
GET THINGS

DONE NOT SMART AND
GETS THINGS DONE!

Tuesday, March 4, 14

Hiring Programmers
At Naughty Dog, programmer candidates are evaluated
for:

math and problem-solving skills,

knowledge of low-level hardware and optimization
techniques,

general computer science (data structures,
algorithms, languages)

... in that order!

Tuesday, March 4, 14

Culture

Tuesday, March 4, 14

Retaining Your Talent
Trust your people

Give them creative freedom and responsibility

Build a culture of mutual respect and continual
learning

Effort translates directly to rewards

Don’t be afraid to let a bad apple go

Tuesday, March 4, 14

Flying by the Seat of
Our Pants
Richard Lemarchand, Co-Lead Designer on
Uncharted series gave a great talk on this topic

“How to Fly by the Seat of Your Pants
(Without Crapping Them)”

 - D.I.C.E. Summit, 2010

http://www.g4tv.com/videos/44276/
dice-‐2010-‐naughty-‐dog-‐presentation/

Tuesday, March 4, 14

http://www.g4tv.com/videos/44276/dice-2010-naughty-dog-presentation/
http://www.g4tv.com/videos/44276/dice-2010-naughty-dog-presentation/
http://www.g4tv.com/videos/44276/dice-2010-naughty-dog-presentation/
http://www.g4tv.com/videos/44276/dice-2010-naughty-dog-presentation/

Culture
Environment of mutual respect and trust

Open door policy; collaboration encouraged

Aggressively criticize ideas, but never let it get personal

No producers ⇒ everyone is a producer!

Literally every employee contributes to making the
game...

... even our receptionist... and the two co-presidents!

Tuesday, March 4, 14

Process

Tuesday, March 4, 14

Development Process

Each team at Naughty Dog has its own process

We’ll focus on technology development process
in this talk (the process used by the programmers)

We’ll also talk a bit about the overall process
within the studio

Tuesday, March 4, 14

Core Philosophies
KISS -- keep it simple (stupid)

Rapid iteration

Keep the game running at all times

Everyone always runs the latest version of the
game

Minimal meetings (maximum communication!)

Manage scope of the project to maximize quality

Tuesday, March 4, 14

KISS
Not everything we do at Naughty Dog is rocket science...

... only some of it is!

In fact, we usually select the simplest, most
straightforward solution that gets the job done

e.g., simple text files, not flashy GUIs

e.g., command-line build tools

Don’t reinvent the wheel

Tuesday, March 4, 14

Rapid Iteration
Focus on achieving results on-screen...

... not architectural perfection or “religious” dogma

Rapid iteration!

Get a rough prototype up and running ASAP

Leverage existing systems to prototype new
ones

Refine and iterate many, many (many!) times

Tuesday, March 4, 14

Keep It Running

A central pillar of our rapid iteration approach:

Keep the game running at all times

When developing a new system, we usually either:

1.gradually evolve an existing system, or

2.bring the new system up in parallel to the old

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

ver 1

USER 1

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

ver 1

USER 1

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

ver 1

USER 1

ver 1

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

ver 1

USER 1

ver 1

USER 2

ver 1

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

ver 1

USER 1

ver 1

USER 2

ver 1ver 2

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

ver 1

USER 1

ver 1

USER 2

ver 1ver 2

ver 2 ver 2

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

ver 1

USER 1

ver 1

USER 2

ver 1ver 2ver 3

ver 2 ver 2

Tuesday, March 4, 14

Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce

ver 1

USER 1

ver 1

USER 2

ver 1ver 2ver 3

ver 3 ver 3

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

ver 1

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

ver 1ver 2

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

ver 1ver 2ver 3

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

USER 1

ver 1ver 2ver 3

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

USER 1

ver 1ver 2ver 3

ver 3

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

USER 1 USER 2

ver 1ver 2ver 3

ver 3

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

USER 1 USER 2

ver 1ver 2ver 3

ver 3 ver 3

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

USER 1 USER 2

ver 1ver 2ver 3

ver 3 ver 3ver 3

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

USER 1 USER 2

ver 1ver 2ver 3

ver 3 ver 3ver 4

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

USER 1 USER 2

ver 1ver 2ver 3

ver 3 ver 3

ver 4

ver 4

Tuesday, March 4, 14

Revision Control

Art assets: proprietary in-house tool (“BAM”)

USER 1 USER 2

ver 1ver 2ver 3

ver 3 ver 3

ver 4

ver 4 ver 4

Tuesday, March 4, 14

The Bleeding Edge
Everyone works on latest code/assets at all times

Automated build script called the buildbot builds
every change checked into Perforce

If the build succeeds, a new version of the
game is published to entire studio

If the build fails, email is sent to entire studio

As assets are changed, artists build them globally

Tuesday, March 4, 14

The Bleeding Edge

“But how can you work like that?”

Sounds dangerous, right?

But actually it’s one of the best aspects of
Naughty Dog’s development process

Tuesday, March 4, 14

The Bleeding Edge
Having latest code published immediately means that
errors are discovered immediately

The easiest bug to fix is the one that is freshest in your
mind

Impossible for anyone to get months behind the team

There is exactly one version of the game that we all run

No more “... but it works on my machine!”

Discourages dangerous programming practices

Tuesday, March 4, 14

The Bleeding Edge
Same goes for publishing assets globally:

Problems are discovered quickly

Forces people to think carefully about their changes

Exactly one version of the game assets, seen by
everyone

Rapid iteration encouraged; easy to share/collaborate

No more “... but it works on my machine!”

Tuesday, March 4, 14

Minimal Meetings
Very few long, formal meetings...

... and a LOT of impromptu, short, informal
meetings!

Just pop by someone’s desk and discuss

Go grab other people if their input is needed

Summarize results in an email or on the wiki

Manage via our online task system, “Tasker”

Tuesday, March 4, 14

Tuesday, March 4, 14

Tuesday, March 4, 14

Tuesday, March 4, 14

Tuesday, March 4, 14

Tuesday, March 4, 14

Tuesday, March 4, 14

Tuesday, March 4, 14

Tuesday, March 4, 14

Tuesday, March 4, 14

Balance
Careful, thoughtful balance between story and
gameplay

... and between systemic gameplay and one-
off set pieces

Attention to detail

Prioritizing well / knowing what’s important (and
what’s not)

Tuesday, March 4, 14

Managing Scope
Make the game we want to make

Project schedule always in service to the game
(not vice versa)

May cut some content towards the end of the
project in order to hit our ship date

Use various scheduling tools to plan ahead

... but not too far ahead!

Tuesday, March 4, 14

Technology

Tuesday, March 4, 14

Key Foundational
Technologies
Efficient, fragmentation-free memory allocation

Effective use of multicore computing resources

Careful code and data optimization based on
deep understanding of the hardware

Powerful in-game debugging and profiling facilities

Empower content creators through script and data-
driven systems

Tuesday, March 4, 14

Memory Management

Tuesday, March 4, 14

Memory Allocation
Memory allocation is not free!

General-purpose new/malloc() needs to
handle every possible request -- slow!

Lowest-level memory allocation routines require
a context switch into the OS -- super slow!

Memory fragmentation is the enemy

Know how available memory is being used

Tuesday, March 4, 14

Memory Fragmentation

Tuesday, March 4, 14

Memory Fragmentation
A B C D

E F

G H I

J K

L M N

O P

Tuesday, March 4, 14

Memory Fragmentation
A C D

E F

H I

J K

M

O P

Tuesday, March 4, 14

Memory Fragmentation
A C D

E F

H I

J K

M

O P

Q

Tuesday, March 4, 14

Memory Fragmentation
A C D

E F

H I

J K

M

O P

Q

Tuesday, March 4, 14

Memory Fragmentation
A C D

E F

H I

J K

M

O P

Q

Tuesday, March 4, 14

Memory Fragmentation
A C D

E F

H I

J K

M

O P

Q

Tuesday, March 4, 14

Memory Fragmentation
A C D

E F

H I

J K

M

O P

Q

Tuesday, March 4, 14

Memory Fragmentation
A C D

E F

H I

J K

M

O P

Tuesday, March 4, 14

Memory Allocation
Always better to do allocation yourself:

Side-step the OS

Custom-tailor allocators to match your
software’s allocation patterns

Avoid memory fragmentation entirely

Control your memory map explicitly

Tuesday, March 4, 14

Pool Allocator

Tuesday, March 4, 14

Pool Allocator

A B C D

E F G H

I J K L

M N O P

Q R S T

Tuesday, March 4, 14

Pool Allocator

A C D

E F G H

I J K L

M N O P

Q R S T

Tuesday, March 4, 14

Pool Allocator

A C D

E G H

I J K L

M N O P

Q R S T

Tuesday, March 4, 14

Pool Allocator

A C D

E G H

I J L

M N O P

Q R S T

Tuesday, March 4, 14

Pool Allocator

A C D

E G H

I J L

M N O

Q R S T

Tuesday, March 4, 14

Pool Allocator

A C D

E G H

I J L

M N O

Q S T

Tuesday, March 4, 14

Pool Allocator

A C D

E G H

I J L

M N O

Q S T

U

Tuesday, March 4, 14

Pool Allocator

A C D

E G H

I J L

M N O

Q S T

U

Tuesday, March 4, 14

Pool Allocator

A C D

E G H

I J L

M N O

Q S T

U

FRAGMENTATION HAPPENS, BUT NOT A PROBLEM

Tuesday, March 4, 14

Stack Allocator

Tuesday, March 4, 14

Stack Allocator

A

Tuesday, March 4, 14

Stack Allocator

A B

Tuesday, March 4, 14

Stack Allocator

A B C

Tuesday, March 4, 14

Stack Allocator

A B C D

Tuesday, March 4, 14

Stack Allocator

A B C D E

Tuesday, March 4, 14

Stack Allocator

A B C D

Tuesday, March 4, 14

Stack Allocator

A B C

Tuesday, March 4, 14

Stack Allocator

A B

Tuesday, March 4, 14

Stack Allocator

A

Tuesday, March 4, 14

Stack Allocator

A

Tuesday, March 4, 14

Stack Allocator

A F

Tuesday, March 4, 14

Stack Allocator

A FG

Tuesday, March 4, 14

Stack Allocator

A FG

NO FRAGMENTATION
(AS LONG AS WE ALWAYS
FREE IN REVERSE ORDER)

Tuesday, March 4, 14

Relocatable Heap

Tuesday, March 4, 14

Relocatable Heap
A B C D E F

Tuesday, March 4, 14

Relocatable Heap
A B C

External
Object

D E F

Tuesday, March 4, 14

Relocatable Heap
A C

External
Object

F

Tuesday, March 4, 14

Relocatable Heap
A C

External
Object

F

Tuesday, March 4, 14

Relocatable Heap
A C

External
Object

F

Tuesday, March 4, 14

Relocatable Heap
A C

External
Object

F

NO FRAGMENTATION
(THANKS TO RELOCATION)

Tuesday, March 4, 14

Mapping Your Memory
We employ an explicit memory map to manage and track our
allocations

MemoryMapEntry	 g_memoryMap[]	 =	 {
	 	 {	 GLOBAL,	 	 	 	 	 	 	 SYSTEM,	 SIZE_MB(256)	 },
	 	 {	 VRAM,	 	 	 	 	 	 	 	 	 SYSTEM,	 SIZE_MB(256)	 },
	 	 {	 DEBUG_GLOBAL,	 SYSTEM,	 SIZE_MB(128}	 },
	 	 {	 DEBUG_VRAM,	 	 	 SYSTEM,	 SIZE_MB(128}	 },

	 	 //	 GLOBAL	 allocators
	 	 {	 PHYSICS,	 	 	 	 	 	 GLOBAL,	 SIZE_MB(5)	 },
	 	 {	 OBJECTS,	 	 	 	 	 	 GLOBAL,	 SIZE_MB(32)	 },
	 	 //	 ...
};

Tuesday, March 4, 14

Multicore Hardware

Tuesday, March 4, 14

Multicore Hardware
PS2, PS3 and PS4 are multicore architectures

PS3: one central CPU (PPU) + 6 synergistic
processing units (SPUs) + GPU

PS4: 8 CPU cores organized into two clusters +
GPU with powerful general-purpose compute
engine

Crucial to take full advantage of all processing
resources!

Tuesday, March 4, 14

Multicore: Job System
On PS3, we developed a highly efficient job system in
conjunction with the ICE team

Job = input, scratch, and output buffer(s) + code

Jobs are kicked by the PPU (or by other jobs) and
scheduled to run on the SPUs

Gather results of job(s) later in this frame, or during
the next frame

Fairly granular -- thousands of jobs / frame

Tuesday, March 4, 14

PS3 Job System

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

GPU

Tuesday, March 4, 14

PS3 Job System

PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Tuesday, March 4, 14

PS3 Job System
PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Tuesday, March 4, 14

PS3 Job System
PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Main Thread

Tuesday, March 4, 14

PS3 Job System
PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Job 1

Main Thread

Tuesday, March 4, 14

PS3 Job System
PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Job 1

Job 2

Main Thread

Tuesday, March 4, 14

PS3 Job System
PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Job 1

Job 2

Job 3

Main Thread

Tuesday, March 4, 14

PS3 Job System
PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Main Thread

Tuesday, March 4, 14

PS3 Job System
PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Main Thread

Tuesday, March 4, 14

PS3 Job System
PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Main Thread

Tuesday, March 4, 14

PS3 Job System
PPU

SPU 0

SPU 1

SPU 2

SPU 3

SPU 4

SPU 5

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Main Thread

Job 8

Job 9

Job 10

Job 11

Job 12

Job 13

Job 14 Job 15

Job 16

Job 17

Job 18 Job 19 Job 20

Job 21

Tuesday, March 4, 14

Multicore: Job System
On PS4 we implemented a new job system

Similar concept to SPU job system on PS3

6 CPUs, 6 worker threads

Jobs are kicked, picked up by available worker

Each job acts like a lightweight fiber

Shared memory, but can retain input, scratch and
output buffer(s) for legacy code migration

Tuesday, March 4, 14

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

PS4 Job System

GPU

Tuesday, March 4, 14

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

PS4 Job System

GPU

Tuesday, March 4, 14

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

PS4 Job System
GPU

Tuesday, March 4, 14

Worker Thread 3

Worker Thread 4

Worker Thread 5

Worker Thread 2

Worker Thread 1

Worker Thread 0Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

PS4 Job System
GPU

Tuesday, March 4, 14

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

PS4 Job System
GPU

Job 1: Main Game Loop

Tuesday, March 4, 14

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

PS4 Job System
GPU

Job 1: Main Game Loop

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Job 10

Job 11

Job 12 Job 13

Job 14

Job 15

Job 16 Job 17 Job 18

Job 19

Tuesday, March 4, 14

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

PS4 Job System
GPU

Job 1: Main Game Loop

Rendering + GPGPU Wavefronts

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Job 10

Job 11

Job 12 Job 13

Job 14

Job 15

Job 16 Job 17 Job 18

Job 19

Tuesday, March 4, 14

Optimization

Tuesday, March 4, 14

Understand Your Hardware

The secret to writing highly efficient code is mastery of
your hardware (PlayStation1 through PlayStation4)

Memory caching and its implications

Superscalar CPU architecture and pipelining

Branch prediction, data dependencies, load-hit-store, ...

Assembly language downcoding

Optimization of data layouts as well as code

Tuesday, March 4, 14

Memory Caching

CPU

Tuesday, March 4, 14

Memory Caching

MAIN RAM
(large)

CPU

Tuesday, March 4, 14

Memory Caching

MAIN RAM
(large)

CPU

200+ CYCLES

Tuesday, March 4, 14

Memory Caching

MAIN RAM
(large)L2

(small)

CPU

200+ CYCLES

Tuesday, March 4, 14

Memory Caching

MAIN RAM
(large)L2

(small)

CPU

200+ CYCLES

20+
CYCLES

Tuesday, March 4, 14

L1
(very
small)

Memory Caching

MAIN RAM
(large)L2

(small)

CPU

200+ CYCLES

20+
CYCLES

Tuesday, March 4, 14

L1
(very
small)

Memory Caching

MAIN RAM
(large)L2

(small)

CPU

200+ CYCLES

20+
CYCLES

3
CYCLES

Tuesday, March 4, 14

L1
(very
small)

Memory Caching

MAIN RAM
(large)L2

(small)

CPU

200+ CYCLES

20+
CYCLES

3
CYCLES

Regs
FREE

Tuesday, March 4, 14

L1 I$

L1 D$

Memory Caching

MAIN RAM
(large)L2

(small)

CPU

200+ CYCLES

20+
CYCLES

3
CYCLES

Regs
FREE

Tuesday, March 4, 14

Memory Caching

Understanding the cache allows you to optimize

Don’t forget the 80/20 rule

General rules of thumb:

Keep high-performance code small (fit in I$)

Keep high-performance data small and
contiguous (fit in D$)

Tuesday, March 4, 14

L2
(2 MiB)

PS4 Cache Architecture

MAIN RAM
(8 GiB)

CPU

30+
CYCLES

220+ CYCLES

3
CYCLES

L1 I$
(32 KiB)

L1 D$
(32 KiB)

Regs
FREE

Tuesday, March 4, 14

L2
(2 MiB)

PS4 Cache Architecture

MAIN RAM
(8 GiB)

CPU

L1 I$
(32 KiB)

L1 D$
(32 KiB)

Regs
FREE

C0 C1

C2 C3

C4 C5

C6 C7

Tuesday, March 4, 14

L2
(1 MiB)

L2
(1 MiB)

PS4 Cache Architecture

MAIN RAM
(8 GiB)

CPU

L1 I$
(32 KiB)

L1 D$
(32 KiB)

Regs
FREE

C0 C1

C2 C3

C4 C5

C6 C7

Tuesday, March 4, 14

L2
(1 MiB)

L2
(1 MiB)

PS4 Cache Architecture

MAIN RAM
(8 GiB)

CPU

L1 I$
(32 KiB)

L1 D$
(32 KiB)

Regs
FREE

C0 C1

C2 C3

C4 C5

C6 C7

26 CYCLES

26 CYCLES

Tuesday, March 4, 14

L2
(1 MiB)

L2
(1 MiB)

PS4 Cache Architecture

MAIN RAM
(8 GiB)

CPU

L1 I$
(32 KiB)

L1 D$
(32 KiB)

Regs
FREE

C0 C1

C2 C3

C4 C5

C6 C7

190 CYCLES

Tuesday, March 4, 14

PS4 Cache Architecture

0x0000
0x0040
0x0080
0x00C0
0x0100
0x0140
0x0180
0x01C0
0x0200
0x0240
0x0280

0x5000
0x5040
0x5080
0x50C0
0x5100
0x5140
0x5180
0x51C0
0x5200
0x5240
0x5280

MAIN RAM CACHE

Tuesday, March 4, 14

PS4 Cache Architecture

0x0000
0x0040
0x0080
0x00C0
0x0100
0x0140
0x0180
0x01C0
0x0200
0x0240
0x0280

0x5000
0x5040
0x5080
0x50C0
0x5100
0x5140
0x5180
0x51C0
0x5200
0x5240
0x5280

MAIN RAM CACHE

Tuesday, March 4, 14

PS4 Cache Architecture

0x0000
0x0040
0x0080
0x00C0
0x0100
0x0140
0x0180
0x01C0
0x0200
0x0240
0x0280

0x5000
0x5040
0x5080
0x50C0
0x5100
0x5140
0x5180
0x51C0
0x5200
0x5240
0x5280

MAIN RAM CACHE

Tuesday, March 4, 14

PS4 Optimization

PS4-specific: avoid cross-cluster L2 cache line
sharing (190 cycles versus 26 cycles)!

U32	 g_jobCount[6];	 //	 one	 per	 core

Tuesday, March 4, 14

struct	 JobCount
{
	 	 	 	 U32	 m_count;
	 	 	 	 U8	 	 m_padding[60];
};
JobCount	 g_jobCount[6];	 //	 one	 per	 core

PS4 Optimization

PS4-specific: avoid cross-cluster L2 cache line
sharing (190 cycles versus 26 cycles)!

Tuesday, March 4, 14

Pipelined CPU

IF ID/RF EXEC MEM WB

Tuesday, March 4, 14

Pipelined CPU

INSTRUCTION FETCH

IF ID/RF EXEC MEM WB

Tuesday, March 4, 14

Pipelined CPU

INSTRUCTION DECODE/
REGISTER FETCH

IF ID/RF EXEC MEM WB

Tuesday, March 4, 14

Pipelined CPU

EXECUTION

IF ID/RF EXEC MEM WB

Tuesday, March 4, 14

Pipelined CPU

MEMORY ACCESS

IF ID/RF EXEC MEM WB

Tuesday, March 4, 14

Pipelined CPU

WRITE-BACK

IF ID/RF EXEC MEM WB

Tuesday, March 4, 14

Pipelined CPU

IF ID/RF EXEC MEM WB

Tuesday, March 4, 14

Pipelined CPU
IF ID/RF EXEC MEM WB

1

2

3

4

5

Tuesday, March 4, 14

Pipelined CPU
IF ID/RF EXEC MEM WB

1

2

3

4

5

Tuesday, March 4, 14

Pipelined CPU
IF ID/RF EXEC MEM WB

A1

2

3

4

5

Tuesday, March 4, 14

Pipelined CPU
IF ID/RF EXEC MEM WB

A

B A

1

2

3

4

5

Tuesday, March 4, 14

Pipelined CPU
IF ID/RF EXEC MEM WB

A

B A

C AB

1

2

3

4

5

Tuesday, March 4, 14

Pipelined CPU
IF ID/RF EXEC MEM WB

A

B A

C AB

D ABC

1

2

3

4

5

Tuesday, March 4, 14

Pipelined CPU
IF ID/RF EXEC MEM WB

A

B A

C AB

D ABC

D ABCE

1

2

3

4

5

Tuesday, March 4, 14

Mispredicted Branch

A

B

C

D

E

F

G

Tuesday, March 4, 14

Mispredicted Branch

A

B

C

D

E

F

G

Tuesday, March 4, 14

Mispredicted Branch
IF ID/RF EXEC MEM WB

1

2

3

4

5

Tuesday, March 4, 14

Mispredicted Branch
IF ID/RF EXEC MEM WB

A1

2

3

4

5

Tuesday, March 4, 14

Mispredicted Branch
IF ID/RF EXEC MEM WB

A

B A

1

2

3

4

5

Tuesday, March 4, 14

Mispredicted Branch
IF ID/RF EXEC MEM WB

A

B A

C AB

1

2

3

4

5

Tuesday, March 4, 14

Mispredicted Branch
IF ID/RF EXEC MEM WB

A

B A

C AB

AD BC

1

2

3

4

5

Tuesday, March 4, 14

Mispredicted Branch
IF ID/RF EXEC MEM WB

A

B A

C AB

A

1

2

3

4

5

Tuesday, March 4, 14

Mispredicted Branch
IF ID/RF EXEC MEM WB

A

B A

C AB

A

AE

1

2

3

4

5

Tuesday, March 4, 14

Mispredicted Branch
How can we take advantage of this knowledge?

1. How good is your CPU’s branch prediction HW?

2. If not good (e.g. PS3 PPU!), avoid branches in high-
performance code:

Calculate both results and use fsel

Split branchy loops into separate cases

Select simpler, less branchy algorithms (e.g. insertion
sort over quicksort) where applicable

Tuesday, March 4, 14

Tools

Tuesday, March 4, 14

In-Engine Debugging
and Profiling Tools
Crucial to build in-engine tools to aid in
development

In-game development menus and shortcut keys

Debug drawing facilities

In-engine profiling tools

Useful to all disciplines

Programmers, designers, artists, sound team, ...

Tuesday, March 4, 14

In-Game Menus

Tuesday, March 4, 14

Debug Drawing

Tuesday, March 4, 14

Debug Drawing

Tuesday, March 4, 14

Debug Drawing

Tuesday, March 4, 14

Profiling Tools

Tuesday, March 4, 14

Profiling Tools

Tuesday, March 4, 14

Profiling Tools

Tuesday, March 4, 14

Profiling Tools

Tuesday, March 4, 14

Profiling Tools

Tuesday, March 4, 14

Profiling Tools

Tuesday, March 4, 14

Profiling Tools

Tuesday, March 4, 14

Data-Driven Design

Tuesday, March 4, 14

Data-Driven Design
Put the power to create into the hands of the
content creators!

Reduce dependencies on programming team

At Naughty Dog, we do this via:

Data-driven systems with easy-to-edit data files

Runtime scripting language for use by
designers and artists

Tuesday, March 4, 14

Data-Driven Design
Both data scripts and runtime scripts written in
Scheme (a Lisp variant)

Rich Lisp history at Naughty Dog!

Scheme offers powerful language customization
tools via hygienic macros

Allows you to easily customize the language
to suit your needs

Tuesday, March 4, 14

Data-Driven Design
Example of simple data definition script:

(define-‐physics-‐sound
	 	 :models	 	 	 	 	 	 	 ('tin-‐cans	 'rusty-‐cans)
	 	 :joint	 	 	 	 	 	 	 	 'root
	 	 :light-‐hit	 	 	 	 'sfx-‐cans-‐hit-‐light
	 	 :hard-‐hit	 	 	 	 	 'sfx-‐cans-‐hard-‐hit
	 	 :roll	 	 	 	 	 	 	 	 	 'sfx-‐cans-‐roll
	 	 :slide	 	 	 	 	 	 	 	 'sfx-‐cans-‐slide
	 	 :light-‐force	 	 2.0
	 	 :hard-‐force	 	 	 10.0
)

Tuesday, March 4, 14

Data-Driven Design

Users can edit data-definition scripts in any text
editor

Re-build the data and hot-swap into the running
game via a command-line Scheme interpreter

>	 (mr	 "physics-‐sounds.dc")

physics-sounds.bin Running
Game

Tuesday, March 4, 14

Runtime Scripts
Example of runtime script:

(define-‐state-‐script	 'ss-‐kick-‐gate
	 	 (state	 ('idle)
	 	 	 	 (on	 (start)
	 	 	 	 	 	 (animate	 'self	 'gate-‐idle)
)
	 	 	 	 (on	 (event	 'kick)
	 	 	 	 	 	 (animate	 'player	 'player-‐gate-‐kick)
	 	 	 	 	 	 (wait-‐animate	 'self	 'gate-‐open)
	 	 	 	 	 	 (send-‐event	 'opened	 'self)
	 	 	 	 	 	 (go	 'open)
)

Tuesday, March 4, 14

Runtime Scripts
	 	 ;;	 ...

	 	 (state	 ('open)
	 	 	 	 (on	 (start)
	 	 	 	 	 	 (animate	 'self	 'gate-‐idle-‐open)
)
	 	 	 	 (on	 (event	 'close)
	 	 	 	 	 	 (wait-‐animate	 'self	 'gate-‐close)
	 	 	 	 	 	 (go	 'idle)
)
)
)

Tuesday, March 4, 14

Runtime Scripts

Users can edit runtimes scripts in any text editor

Re-build the script and hot-swap into the running
game via a command-line Scheme interpreter

>	 (mr	 "ss-‐suburbs.dc")

ss-suburbs.bin Running
Game

Tuesday, March 4, 14

Runtime Scripts

Users can edit runtimes scripts in any text editor

Re-build the script and hot-swap into the running
game via a command-line Scheme interpreter

>	 (mr	 "ss-‐suburbs.dc")

ss-suburbs.bin Running
Game

SCRIPT CODE IS DATA!

Tuesday, March 4, 14

Conclusion

Tuesday, March 4, 14

Conclusion

People

Culture

Process

Technology

CONTENT!

Tuesday, March 4, 14

Lighting and Shading

Tuesday, March 4, 14

Visual Effects

Tuesday, March 4, 14

Audio

Tuesday, March 4, 14

Animation

Tuesday, March 4, 14

Thanks for Listening!

Questions?
jason_gregory@naughtydog.com

www.gameenginebook.com

Tuesday, March 4, 14

