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“The University of 
Naughty Dog”

Paul Keet, Lead Programmer, Medal of Honor
Electronic Arts
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Naughty Dog Games
Believable characters, compelling stories

Jaw-dropping visuals

Some of the best animation in the biz

Rich and immersive soundscapes

Touching vocal performances and memorable 
music

World-class technology
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So What’s Our Secret?

People

Culture

Process

Technology

CONTENT!
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People
Making games (and most commercial products!) is 
a team effort

What makes a great team?

Each individual is of the highest caliber

Team as a whole “gels” and operates effectively

Effective hiring is the key
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Axes of Hiring

Joel Spolsky, of Microsoft and Fog Creek fame, 
speaks of the two axes of hiring

Is the candidate smart?

Can the candidate get things done?
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Axes of Hiring

SMARTNESS

ABILITY TO
GET THINGS

DONE
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Axes of Hiring
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ABILITY TO
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DONE

NOT SMART, CAN’T
GET THINGS DONE
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Axes of Hiring

SMARTNESS

ABILITY TO
GET THINGS

DONE NOT SMART AND
GETS THINGS DONE!
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Hiring Programmers
At Naughty Dog, programmer candidates are evaluated 
for:

math and problem-solving skills,

knowledge of low-level hardware and optimization 
techniques,

general computer science (data structures, 
algorithms, languages)

... in that order!
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Culture
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Retaining Your Talent
Trust your people

Give them creative freedom and responsibility

Build a culture of mutual respect and continual 
learning

Effort translates directly to rewards

Don’t be afraid to let a bad apple go
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Flying by the Seat of 
Our Pants
Richard Lemarchand, Co-Lead Designer on 
Uncharted series gave a great talk on this topic

“How to Fly by the Seat of Your Pants 
(Without Crapping Them)”

  - D.I.C.E. Summit, 2010

http://www.g4tv.com/videos/44276/
dice-‐2010-‐naughty-‐dog-‐presentation/
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Culture
Environment of mutual respect and trust

Open door policy; collaboration encouraged

Aggressively criticize ideas, but never let it get personal

No producers ⇒ everyone is a producer!

Literally every employee contributes to making the 
game...

... even our receptionist... and the two co-presidents!
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Process
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Development Process

Each team at Naughty Dog has its own process

We’ll focus on technology development process 
in this talk (the process used by the programmers)

We’ll also talk a bit about the overall process 
within the studio
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Core Philosophies
KISS -- keep it simple (stupid)

Rapid iteration

Keep the game running at all times

Everyone always runs the latest version of the 
game

Minimal meetings (maximum communication!)

Manage scope of the project to maximize quality
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KISS
Not everything we do at Naughty Dog is rocket science...

... only some of it is!

In fact, we usually select the simplest, most 
straightforward solution that gets the job done

e.g., simple text files, not flashy GUIs

e.g., command-line build tools

Don’t reinvent the wheel
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Rapid Iteration
Focus on achieving results on-screen...

... not architectural perfection or “religious” dogma

Rapid iteration!

Get a rough prototype up and running ASAP

Leverage existing systems to prototype new 
ones

Refine and iterate many, many (many!) times

Tuesday, March 4, 14



Keep It Running

A central pillar of our rapid iteration approach:

Keep the game running at all times

When developing a new system, we usually either:

1.gradually evolve an existing system, or

2.bring the new system up in parallel to the old
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Revision Control

Revision control is central to the studio

Code, script, text data files: Perforce
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Revision Control

Art assets: proprietary in-house tool (“BAM”)
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The Bleeding Edge
Everyone works on latest code/assets at all times

Automated build script called the buildbot builds 
every change checked into Perforce

If the build succeeds, a new version of the 
game is published to entire studio

If the build fails, email is sent to entire studio

As assets are changed, artists build them globally

Tuesday, March 4, 14



The Bleeding Edge

“But how can you work like that?”

Sounds dangerous, right?

But actually it’s one of the best aspects of 
Naughty Dog’s development process
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The Bleeding Edge
Having latest code published immediately means that 
errors are discovered immediately

The easiest bug to fix is the one that is freshest in your 
mind

Impossible for anyone to get months behind the team

There is exactly one version of the game that we all run

No more “... but it works on my machine!”

Discourages dangerous programming practices
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The Bleeding Edge
Same goes for publishing assets globally:

Problems are discovered quickly

Forces people to think carefully about their changes

Exactly one version of the game assets, seen by 
everyone

Rapid iteration encouraged; easy to share/collaborate

No more “... but it works on my machine!”

Tuesday, March 4, 14



Minimal Meetings
Very few long, formal meetings...

... and a LOT of impromptu, short, informal 
meetings!

Just pop by someone’s desk and discuss

Go grab other people if their input is needed

Summarize results in an email or on the wiki

Manage via our online task system, “Tasker”
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Balance
Careful, thoughtful balance between story and 
gameplay

... and between systemic gameplay and one-
off set pieces

Attention to detail

Prioritizing well / knowing what’s important (and 
what’s not)
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Managing Scope
Make the game we want to make

Project schedule always in service to the game 
(not vice versa)

May cut some content towards the end of the 
project in order to hit our ship date

Use various scheduling tools to plan ahead

... but not too far ahead!
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Technology
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Key Foundational 
Technologies
Efficient, fragmentation-free memory allocation

Effective use of multicore computing resources

Careful code and data optimization based on 
deep understanding of the hardware

Powerful in-game debugging and profiling facilities

Empower content creators through script and data-
driven systems
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Memory Management
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Memory Allocation
Memory allocation is not free!

General-purpose new/malloc() needs to 
handle every possible request -- slow! 

Lowest-level memory allocation routines require 
a context switch into the OS -- super slow!

Memory fragmentation is the enemy

Know how available memory is being used
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Memory Fragmentation
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Memory Allocation
Always better to do allocation yourself:

Side-step the OS

Custom-tailor allocators to match your 
software’s allocation patterns

Avoid memory fragmentation entirely

Control your memory map explicitly
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Pool Allocator
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FRAGMENTATION HAPPENS, BUT NOT A PROBLEM
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Stack Allocator
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Stack Allocator
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Stack Allocator
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Stack Allocator
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Stack Allocator

A F
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Stack Allocator

A FG
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Stack Allocator

A FG

NO FRAGMENTATION
(AS LONG AS WE ALWAYS
FREE IN REVERSE ORDER)
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Relocatable Heap
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Relocatable Heap
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Relocatable Heap
A C

External 
Object

F

NO FRAGMENTATION
(THANKS TO RELOCATION)
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Mapping Your Memory
We employ an explicit memory map to manage and track our 
allocations

MemoryMapEntry	  g_memoryMap[]	  =	  {
	  	  {	  GLOBAL,	  	  	  	  	  	  	  SYSTEM,	  SIZE_MB(256)	  },
	  	  {	  VRAM,	  	  	  	  	  	  	  	  	  SYSTEM,	  SIZE_MB(256)	  },
	  	  {	  DEBUG_GLOBAL,	  SYSTEM,	  SIZE_MB(128}	  },
	  	  {	  DEBUG_VRAM,	  	  	  SYSTEM,	  SIZE_MB(128}	  },

	  	  //	  GLOBAL	  allocators
	  	  {	  PHYSICS,	  	  	  	  	  	  GLOBAL,	  SIZE_MB(	  	  5)	  },
	  	  {	  OBJECTS,	  	  	  	  	  	  GLOBAL,	  SIZE_MB(	  32)	  },
	  	  //	  ...
};
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Multicore Hardware
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Multicore Hardware
PS2, PS3 and PS4 are multicore architectures

PS3: one central CPU (PPU) + 6 synergistic 
processing units (SPUs) + GPU

PS4: 8 CPU cores organized into two clusters + 
GPU with powerful general-purpose compute 
engine

Crucial to take full advantage of all processing 
resources!
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Multicore: Job System
On PS3, we developed a highly efficient job system in 
conjunction with the ICE team

Job = input, scratch, and output buffer(s) + code

Jobs are kicked by the PPU (or by other jobs) and 
scheduled to run on the SPUs

Gather results of job(s) later in this frame, or during 
the next frame

Fairly granular -- thousands of jobs / frame
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PS3 Job System
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Multicore: Job System
On PS4 we implemented a new job system

Similar concept to SPU job system on PS3

6 CPUs, 6 worker threads

Jobs are kicked, picked up by available worker

Each job acts like a lightweight fiber

Shared memory, but can retain input, scratch and 
output buffer(s) for legacy code migration
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Optimization

Tuesday, March 4, 14



Understand Your Hardware

The secret to writing highly efficient code is mastery of 
your hardware (PlayStation1 through PlayStation4)

Memory caching and its implications

Superscalar CPU architecture and pipelining

Branch prediction, data dependencies, load-hit-store, ...

Assembly language downcoding

Optimization of data layouts as well as code
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Memory Caching

CPU
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Regs
FREE
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Memory Caching

Understanding the cache allows you to optimize

Don’t forget the 80/20 rule

General rules of thumb:

Keep high-performance code small (fit in I$)

Keep high-performance data small and 
contiguous (fit in D$)
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PS4 Cache Architecture

0x0000
0x0040
0x0080
0x00C0
0x0100
0x0140
0x0180
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0x5000
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0x5140
0x5180
0x51C0
0x5200
0x5240
0x5280

MAIN RAM CACHE
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PS4 Cache Architecture
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PS4 Optimization

PS4-specific: avoid cross-cluster L2 cache line 
sharing (190 cycles versus 26 cycles)!

U32	  g_jobCount[6];	  //	  one	  per	  core
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struct	  JobCount
{
	  	  	  	  U32	  m_count;
	  	  	  	  U8	  	  m_padding[60];
};
JobCount	  g_jobCount[6];	  //	  one	  per	  core

PS4 Optimization

PS4-specific: avoid cross-cluster L2 cache line 
sharing (190 cycles versus 26 cycles)!
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Pipelined CPU

IF ID/RF EXEC MEM WB
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Pipelined CPU

INSTRUCTION FETCH
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Pipelined CPU

INSTRUCTION DECODE/
REGISTER FETCH
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Pipelined CPU

EXECUTION
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Pipelined CPU

MEMORY ACCESS
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Pipelined CPU

WRITE-BACK
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Mispredicted Branch
How can we take advantage of this knowledge?

1. How good is your CPU’s branch prediction HW?

2. If not good (e.g. PS3 PPU!), avoid branches in high-
performance code:

Calculate both results and use fsel

Split branchy loops into separate cases

Select simpler, less branchy algorithms (e.g. insertion 
sort over quicksort) where applicable
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In-Engine Debugging 
and Profiling Tools
Crucial to build in-engine tools to aid in 
development

In-game development menus and shortcut keys

Debug drawing facilities

In-engine profiling tools

Useful to all disciplines

Programmers, designers, artists, sound team, ...
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In-Game Menus
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Debug Drawing
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Debug Drawing
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Debug Drawing
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Data-Driven Design
Put the power to create into the hands of the 
content creators!

Reduce dependencies on programming team

At Naughty Dog, we do this via:

Data-driven systems with easy-to-edit data files

Runtime scripting language for use by 
designers and artists
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Data-Driven Design
Both data scripts and runtime scripts written in 
Scheme (a Lisp variant)

Rich Lisp history at Naughty Dog!

Scheme offers powerful language customization 
tools via hygienic macros

Allows you to easily customize the language 
to suit your needs
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Data-Driven Design
Example of simple data definition script:

(define-‐physics-‐sound
	  	  :models	  	  	  	  	  	  	  ('tin-‐cans	  'rusty-‐cans)
	  	  :joint	  	  	  	  	  	  	  	  'root
	  	  :light-‐hit	  	  	  	  'sfx-‐cans-‐hit-‐light
	  	  :hard-‐hit	  	  	  	  	  'sfx-‐cans-‐hard-‐hit
	  	  :roll	  	  	  	  	  	  	  	  	  'sfx-‐cans-‐roll
	  	  :slide	  	  	  	  	  	  	  	  'sfx-‐cans-‐slide
	  	  :light-‐force	  	  2.0
	  	  :hard-‐force	  	  	  10.0
)
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Data-Driven Design

Users can edit data-definition scripts in any text 
editor

Re-build the data and hot-swap into the running 
game via a command-line Scheme interpreter

>	  (mr	  "physics-‐sounds.dc")

physics-sounds.bin Running
Game
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Runtime Scripts
Example of runtime script:

(define-‐state-‐script	  'ss-‐kick-‐gate
	  	  (state	  ('idle)
	  	  	  	  (on	  (start)
	  	  	  	  	  	  (animate	  'self	  'gate-‐idle)
	  	  	  	  )
	  	  	  	  (on	  (event	  'kick)
	  	  	  	  	  	  (animate	  'player	  'player-‐gate-‐kick)
	  	  	  	  	  	  (wait-‐animate	  'self	  'gate-‐open)
	  	  	  	  	  	  (send-‐event	  'opened	  'self)
	  	  	  	  	  	  (go	  'open)
	  	  	  	  )
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Runtime Scripts
	  	  ;;	  ...

	  	  (state	  ('open)
	  	  	  	  (on	  (start)
	  	  	  	  	  	  (animate	  'self	  'gate-‐idle-‐open)
	  	  	  	  )
	  	  	  	  (on	  (event	  'close)
	  	  	  	  	  	  (wait-‐animate	  'self	  'gate-‐close)
	  	  	  	  	  	  (go	  'idle)
	  	  	  	  )
	  	  )
)
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Runtime Scripts

Users can edit runtimes scripts in any text editor

Re-build the script and hot-swap into the running 
game via a command-line Scheme interpreter

>	  (mr	  "ss-‐suburbs.dc")

ss-suburbs.bin Running
Game
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Runtime Scripts

Users can edit runtimes scripts in any text editor

Re-build the script and hot-swap into the running 
game via a command-line Scheme interpreter

>	  (mr	  "ss-‐suburbs.dc")

ss-suburbs.bin Running
Game

SCRIPT CODE IS DATA!
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Conclusion

People

Culture

Process

Technology

CONTENT!
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Visual Effects
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Thanks for Listening!

Questions?
jason_gregory@naughtydog.com

www.gameenginebook.com
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