
THE CAMERAS OF

Jason Gregory, Lead Programmer
and

Travis McIntosh, Lead Programmer
Naughty Dog, Inc.

prepared by

Wednesday, November 30, 2011



Agenda

• Overview

• The Render Camera

• Game Cameras

• Blending and the 
Camera Stack

• The Camera 
Manager

• Follow Camera

• Camera Collision

• Aim Camera

• Melee Camera

• Camera Additives

• 3D

• Future Directions

Wednesday, November 30, 2011



Overview

Wednesday, November 30, 2011



Overview

Wednesday, November 30, 2011



Overview

• Duties of typical game camera system:
• Approximate model of real-world camera
• Control position, orientation, zoom,

depth-of-field, other parameters over time
• Support various camera types (behaviors)
• Manage cross-blends between cameras
• Detect and resolve collisions

Wednesday, November 30, 2011



The Render Camera

• Low-level interface to rendering engine
• Parameters include:

• position, orientation, aspect ratio, field of 
view (FOV), frustum clip planes, projection 
properties (ortho, perspective), 3D parameters 
(e.g. interocular distance)

• One render camera for full-screen
• One render camera for 3D (rendered 

twice, offset left and right for each eye)
• Two render cameras for split-screen

Wednesday, November 30, 2011



Game Cameras

• Render camera API inconvenient for 
game programmers and designers

• Game camera abstraction more useful
• C++ class = distinct camera behavior
• C++ instance = logical camera in world
• Blending between instances =

cross-fade between camera locations, 
settings and/or behaviors

Wednesday, November 30, 2011



Game Cameras

• 31 camera types in Uncharted 3
• Evolved extensively over the series
• We’ll explore a handful of these today

• Three categories:
• Code-driven cameras
• Designer-controlled cameras
• Debug cameras

Wednesday, November 30, 2011



Code-Driven Cameras

• Follow camera
• Edge camera
• Aim camera
• Cover camera
• Melee camera
• etc.

Wednesday, November 30, 2011



Designer-Controlled Cameras
• Examples:

• Fixed camera
• Pivot camera
• Spline camera
• Animated camera
• etc.

• Cameras placed in level editor (Charter) 
and activated via script

• Designers can also override settings of 
code-driven cameras

Wednesday, November 30, 2011



Debug Cameras

• Free-flying camera
• Simple “no clip” follow camera
• Stick camera (simple follow cam)

Wednesday, November 30, 2011



Game Cameras

Wednesday, November 30, 2011



Game Cameras

Wednesday, November 30, 2011



Blending and the Camera Stack

• Cross-fading between cameras 
implemented using a simple stack

• Each new camera is pushed onto the stack
• Fades up from 0.0 to 1.0 (100%) over time
• Blended with camera(s) below it on stack
• Implicit contribution of non-top cameras is

(1 − β), where β is contribution of top 
camera

• Once a camera is no longer contributing, it 
is automatically removed from the stack

Wednesday, November 30, 2011



Blending and the Camera Stack

Wednesday, November 30, 2011



Blending and the Camera Stack

Wednesday, November 30, 2011



Camera Manager

• Simultaneous camera requests are 
resolved by the camera manager

• Simple priority-based system:
1. Most code-driven cameras (follow, edge, 

cover) have lowest priority
2. Designer-specified cameras are next
3. Special code-driven cameras (aim, death) 

have highest priority

Wednesday, November 30, 2011



Camera Manager
• Code-driven cameras requested every frame
• Designer cameras requested only periodically 

(via script)
• Therefore designer camera requests are 

maintained on a persistent list
• Every frame, camera manager:

• finds highest-priority designer request (if any)
• compares to highest-priority code-driven request
• highest priority of these two “wins”

• Designers can disable or abandon their camera 
requests in script

Wednesday, November 30, 2011



Camera Manager

Wednesday, November 30, 2011



Camera Manager

Wednesday, November 30, 2011



Fixed Camera

Wednesday, November 30, 2011



Fixed Camera

Wednesday, November 30, 2011



Pivot Camera

Wednesday, November 30, 2011



Pivot Camera

Wednesday, November 30, 2011



Spline Camera

Wednesday, November 30, 2011



Spline Camera

Wednesday, November 30, 2011



Spline Camera

Wednesday, November 30, 2011



Spline Camera

Wednesday, November 30, 2011



Debug Cameras

Wednesday, November 30, 2011



Debug Cameras

Wednesday, November 30, 2011



Blending Debug Cameras
• Debug cameras are handled in a special 

way on the camera stack:
• The debug fly camera masks the cameras 

below it on the stack, rather than blending 
with them

• All cameras below the debug fly cam are 
oblivious to its presence on the stack, and 
therefore never blend out

• Also, we keep a second debug fly camera at 
the very bottom of the stack, as a safeguard 
in case all other cameras get popped

Wednesday, November 30, 2011



Blending Debug Cameras

Wednesday, November 30, 2011



Blending Debug Cameras

Wednesday, November 30, 2011



Follow Camera

• More than 50% of player’s time spent in 
the follow camera

• Most difficult camera type to get right
• Target point is controlled by game (follows 

the player)
• Orientation is player-controlled (right stick)
• But camera can also auto-rotate to follow 

player (in some situations)
• Excellent collision resolution is crucial 

(and very tricky!)

Wednesday, November 30, 2011



Follow Camera

• Simple horizontal rotation about player
• Vertical rotation controlled by two 

splines:
• target point spline
• camera position spline

• Splines can be edited in-game

Wednesday, November 30, 2011



Follow Camera

Wednesday, November 30, 2011



Follow Camera

Wednesday, November 30, 2011



Follow Camera: Collision

• Two fans of sphere casts (horizontal and 
vertical)

• Re-position and/or re-orient camera 
based on which direction has most free 
space

Wednesday, November 30, 2011



Follow Camera: Collision

Wednesday, November 30, 2011



Follow Camera: Collision

Wednesday, November 30, 2011



Follow Camera: Modes

• Two rotation modes
• In traversal...

• auto-rotate to follow player

• In combat...
• never rotate the camera, because this 

would interfere with player’s targeting

Wednesday, November 30, 2011



Follow Camera: Traversal

Wednesday, November 30, 2011



Follow Camera: Traversal

Wednesday, November 30, 2011



Follow Camera: Combat

Wednesday, November 30, 2011



Follow Camera: Smoothing

• Ideal post-collision camera position 
jitters quite a lot

• we smooth this with a simple spring

• Spring-mass system in a viscous fluid:
• m (d2x/dt2) + c (dx/dt) + k2x = 0
• Critically damped to prevent oscillation
• Solution: (A + Bt)e−kt 

• Spring generally much tighter in combat 
than in traversal mode

Wednesday, November 30, 2011



Designer-Overridden Settings

• Designers can control follow camera 
settings via script, to tailor behavior for 
specific areas in the game world

• Can also control preferred angle of 
follow camera

• Useful at conclusion of in-game cinematic,
• or to direct player’s attention toward a 

point of interest

Wednesday, November 30, 2011



Designer-Overridden Settings

Wednesday, November 30, 2011



Designer-Overridden Settings

Wednesday, November 30, 2011



Aim Camera

• Requirements:
• Resolve collisions without changing aim 

angle
• Maintain center of screen when blending 

back and forth with other camera types

Wednesday, November 30, 2011



Aim Camera

Wednesday, November 30, 2011



Aim Camera

Wednesday, November 30, 2011



Aim Camera: Collision

• Collision done via a few simple sphere 
casts

• Camera position interpolates between:
• ideal “far” camera position, and
• a secondary “close” camera position

Wednesday, November 30, 2011



Aim Camera

Wednesday, November 30, 2011



Aim Camera

Wednesday, November 30, 2011



Animated Cameras

• When procedural cameras won’t cut it, 
animators can control the camera 
directly

• In Maya, special locators called action 
pack references (apReferences) are used 
to export custom animations

• An apRef can be constrained to a Maya 
camera, allowing the camera’s 
movements to be exported to the game

Wednesday, November 30, 2011



Animated Camera

Wednesday, November 30, 2011



Animated Camera

Wednesday, November 30, 2011



Animated Camera

Wednesday, November 30, 2011



Animated Camera

Wednesday, November 30, 2011



ApRef as Common Reference

• An apRef can also be used to provide a 
common point of reference between the 
various actors in a scene

Actor2Actor1

apRef1 apRef2

Wednesday, November 30, 2011



ApRef as Common Reference

• An apRef can also be used to provide a 
common point of reference between the 
various actors in a scene

Actor2Actor1

apRef1 apRef2

Wednesday, November 30, 2011



Animated Melee Camera

• Animated cameras are used in melee
• Multiple camera paths are authored for 

each melee move
• At run time, ray casts filter out any 

animated camera paths that would 
collide with game world:

• select an animated path if possible,
• else fall back to procedural melee cam

Wednesday, November 30, 2011



Animated Melee Camera

Wednesday, November 30, 2011



Animated Melee Camera

Wednesday, November 30, 2011



Animated Melee Camera

Wednesday, November 30, 2011



Animated Melee Camera

Wednesday, November 30, 2011



Camera Additives

• Animator-authored camera “shake” 
effects implemented using additive 
animations

• Authored as a “regular” camera animation 
in Maya

• Applied as translational and rotational 
deltas at runtime

• Therefore a given additive shake can be 
applied virtually anywhere in-game

Wednesday, November 30, 2011



Camera Additives

Wednesday, November 30, 2011



Camera Additives

Wednesday, November 30, 2011



Camera Additives

• Very effective when used carefully
• Useful for small camera movements only

• Low-frequency and small movements 
“read” well to most players

• High-frequency or large movements are 
too easily misinterpreted as frame-rate 
hitches or camera bugs

• Applied after camera collision, so large 
movements can also put camera back into 
collision!

Wednesday, November 30, 2011



Stereoscopic 3D

• 3D effect achieved by offsetting the 
primary render camera left and right, and 
re-rendering the scene for each eye

• Inter-ocular distance controls relative 
parallax differential between the eyes

• Player can configure this in the options 
menu

• Kept fixed throughout the game

Wednesday, November 30, 2011



Stereoscopic 3D

• Zero-plane distance represents the plane 
in 3D space at which the eyes converge

• i.e. where objects will appear to coincide 
with the physical TV screen

• In U3, we generally never wanted objects 
to “pop out” of the screen — all 3D effects 
go “into” the screen

• Zero-plane distance automatically 
adjusted, by reading the depth buffer, to 
guarantee no “pop out”

Wednesday, November 30, 2011



Future Work
• Camera collision currently done on a per-camera 

basis
• This means collision detection/resolution is imperfect 

during cross-fades
• Would like to add a final collision “clean up” pass — 

perhaps single sphere cast from camera to target

• Would like better camera pre-vis tools
• Maintaining screen center when blending between 

cameras is currently done on a per-camera basis
• Would like a general solver framework, so new cameras 

could be added easily without having to rewrite the 
screen center maintenance code for each one

Wednesday, November 30, 2011



Workshop

Please join me in the workshop session

immediately following this talk

for further discussion and Q&A

jason_gregory@naughtydog.com

Wednesday, November 30, 2011

mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com
mailto:jason_gregory@naughtydog.com

